Categorical Informatics At Scale

Ryan Wisnesky

Conexus Al

SemWebPro 2020

$\Sigma\dashv\Delta\dashv\Pi$

Outline

The

- Who
- What
- When
- Where
- Why
- How

of Conexus and what it means to you, a semantic web user.

Conexus Overview & Relevance

- Who: David Spivak (math), myself (cs), Eric Daimler (business), et al.
- What: solving problems in ETL, data integration, IT interoperability, etc. (data)
- How: Kan extensions, limits and co-limits, etc. (functorial data migration)
- Why: because other technologies cannot solve these problems. (fun and profit)
- Where: San Francisco, Boston, Munich (Daniel Filonik) (also friends at NIST/DC).
- When: 2015-2018 Grant funded; 2018-present Seed stage VC funded.
- Relevance to you:
 - Use and/or contribute to the open source CQL project to do semantic web: CQL is a better OWL than OWL.
 - Use the free and/or commercial CQL IDE and/or our team to manipulate data "using real math"
 - Really hard due to non-computability issues often ignored for pragmatic reasons by mathematicians.
 - Sometimes we hire!
 - We collaborate with entrepreneurs, academics, programmers, domains experts, and more.
 - Data wrangling: it's dirty job, but someone's got to do it

CQL Overview

- Category theory was designed to migrate theorems from one area of mathematics to another, so it is a very natural language with which to describe how to migrate data from one schema to another.
- Community site: <u>http://categoricaldata.net</u>
- Projects:
 - NIST several projects.
 - DARPA BRASS project.
 - Empower Retirement.
 - Stanford Chemistry Department.
 - Uber/Apache Tinkerpop (joint paper: 'algebraic property graphs')

Emp						
ID	mgr	works	first	last		
101	103	q10	Al	Akin		
102	102	×02	Bob	Bo		
103	103	q10	Carl	Cork		

Dept				
ID	sec	name		
q10	101	CS		
×02	102	Math		

Emp						
ID	mgr	works	first	last		
101	103	q10	AI	Akin		
102	102	×02	Bob	Bo		
103	103	q10	Carl	Cork		

	Dept		
ID	sec	name	
q10	101	CS	
×02	102	Math	

Run New Open Save Deploy Options <
Untitled 1.cql × *Employees ×
2
3 4: typeside Ty = literal { Sort 20 21⊡ schema S = literal : Ty { > schema S 21⊡ schema S = literal : Ty { > instance I : S 23 Employee > equations 24 Department foreign_keys 26 manager : Employee -> Employee first(b) = Bob 26 worksIn : Employee -> Department last(b) = Bo
4E typeside Ty = literal { 20 schema S = literal : Ty { 21 schema S = literal : Ty { instance I : S 22 entities entities 23 Employee pepartment 24 Department foreign_keys 26 manager : Employee -> Employee last(b) = Bo 26 worksIn : Employee -> Department first(c) = Carl
20 21□ schema S = literal : Ty { 22 entities 23 Employee 24 Department 25 foreign_keys 26 manager : Employee -> Employee 27 worksIn : Employee -> Department
21□ schema S = literal : Ty { Image: instance I : S 22 entities 23 Employee 24 Department 25 foreign_keys 26 manager : Employee -> Employee 27 worksIn : Employee -> Department
22 entities entities Employee Department foreign_keys foreign_keys manager : Employee -> Employee worksIn : Employee -> Department first(a) = AI first(b) = Bob last(b) = Bo first(c) = Carl
24 Department first(a) = AI 25 foreign_keys first(b) = Bob 26 manager : Employee -> Employee last(b) = Bo 27 worksIn : Employee -> Department first(c) = Carl
25 foreign_keys first(b) = Bob 26 manager : Employee -> Employee last(b) = Bo 27 worksIn : Employee -> Department first(c) = Carl
26manager: Employee> Employeelast(b) = Bo27worksIn: Employee> Departmentfirst(c) = Carl
27 worksIn : Employee -> Department first(c) = Carl
28 secretary : Department -> Employee name(m) = Math
30 Employee.manager.worksIn = Employee.worksIn name(s) = CS
31 Department.secretary.worksIn = Department age(a) = age(c)
32 attributes manager(a) = b
33 first last : Employee -> string 24 manager(b) = b
34 age : Employee \rightarrow nat manager(c) = c
36 name : Department -> string worksln(a) = m
37 observation_equations worksln(h) = m
<pre>38 forall e. cummulative_age(e) = plus(age(e), age(manager(e))) worksh(b) = h worksh(c) = s</pre>
39 options
40 = prover = comptetion
$\frac{41}{42}$
43 E instance I = literal : S {
65 worksin(a) = worksin(manager(a))
66 age(a) = succ(succ(zero))
age(manager(a)) = succ(zero)
Employees - 12:53:27 AM generators
a : Employee
Computation wall-Clock time: 0,15 b: Employee
c : Employee
m : Department
JVM Used Change: 0 MB. Used Max: 19 MB. s : Department

		Employees - 12:53:27 AM		
ummary		Tables TyAlg Hom-sets DP	Text Expression	
chema S	Department (2)			
nstance I : S	Row 🔺	name	secretary	
	a.manager.worksIn	Math	a.manager	
	c.worksln	CS	c	
	Employee (3)			
	Row age	cummulative_age	first last manager	worksin
	a succ(succ(zero))	(succ(succ(zero)) plus succ(zero)) (succ(zero) plus succ(zero))	Rob Ro a manager	a.manager.worksin
	c succ(succ(zero))	(succ(succ(zero)) plus succ(succ(zero)))	Carl c.last c	c.worksin
	string (2)			
	Row 📥			
	a.last			
	Clast			

Friend of a friend

```
constraints works_at_determined1 = literal : FOAF {
forall s:salary ->
exists w:works at
where s.salary1 = w.works_at1
     s.salary2 = w.works_at2
constraints works_at_determined2 = literal : FOAF {
forall w:works at ->
exists s:salary
where s.salary1 = w.works at1
     s_salary2 = w_works at2
constraints frenemy determined = literal : FOAF {
forall fr : frenemy of ->
exists f : friend of
      e : enemy of
where fr.frenemy_of1 = f.friend_of1
     fr.frenemy of 2 = f.friend of 2
     fr.frenemy_of1 = e.enemy_of1
     fr.frenemy of 2 = e.enemy of 2
```

typeside Ty = **literal** { types Number String schema FOAF = literal : Ty { entities //entities Person Organization //spans knows friend of works at salary enemy of frenemy_of foreign_keys //total functions knows1 : knows -> Person knows2 : knows -> Person friend_of1 : friend_of -> Person friend_of2 : friend_of -> Person works_at1 : works_at -> Person works at2 : works at -> Organization salary1 : salary -> Person salary2 : salary -> Organization enemy_of1 : enemy_of -> Person enemy of2 : enemy of -> Person frenemy_of1 : frenemy_of -> Person frenemy_of2 : frenemy_of -> Person attributes //total functions family name : Person -> String age : Person -> Number given_name : Person -> String salary3 : salary -> Number constraints knows_symmetric = literal : FOAF { forall k1:knows ->

exists k2:knows ->
exists k2:knows
where k1.knows1 = k2.knows2
k1.knows2 = k2.knows1

\mathcal{E} lement		Value					
ID	λ	v	ID	au		Cabel	\mathcal{T}_{vpe}
t_1	Trip	(u_1,u_2)	Alice	String			
t_2	Trip	(u_1, u_3)	Bob	String		0	
241	User	Alice	Chaz	String	User	String	String
	User	Roh	$(21, 21_0)$		Trip	User × User	$User \times User$
a_2	0.561	DOD	(a_1, a_2)				
u_3	User	Chaz	(u_1, u_3)	User × User			

CQL: Further Capabilities

- CQL has over 100 keywords
- Categories, functors, and natural transformations (schema, data)
- Left and right Kan extensions (migration of data)
- Limits and colimits (integration of schema, data)
- Grothendieck construction (data <-> schema)
- Patented implementation techniques: automated theorem proving, custom "chase" algorithms, reduction to SQL.

Thanks

- Me: ryan@conexus.com
- <u>http://Categoricaldata.net</u>
- <u>http://conexus.com</u>
- Collaborators welcome!