

WAVES

BIG DATA PLATFORM FOR REAL-TIME SEMANTIC STREAM MANAGEMENT

Badre BELABBESS

LIGM, Marne-La-Vallée, FRANCE ATOS Bezons, FRANCE

A GOOD OLD STORY

WAVES ATOS SE

isep

DATA PUBLICA

Atos

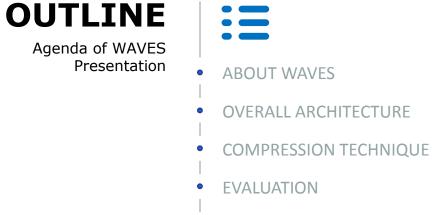
3

A GOOD OLD STORY

WAVES ATOS SE

Atos

INTRODUCTION


WAVES ATOS SE

- > **Presenter:** Badre BELABBESS, PHD candidate
- Research sites:
 - Atos SE: Large european IT Company, Bezons, France
 - *LIGM*: Ponts ParisTech, UPEM, CNRS (UMR 8049), ESIEE Paris
- Main research topics: Big Data frameworks, real-time stream processing, system architecture
- > WAVES project:
 - <u>3 year research project funded by the French government</u>
 - Several partners: Industrial & Academic
 - Distributed Open source platform intended for the new forms of massive semantic data streams processing.

WAVES ATOS SE

• CONCLUSION

ABOUT WAVES

Massive Semantic Streams empowering Innovative Big Data Platform

WAVES IN A NUTSHELL

> Main aspects:

- Real-Time processing
- RDF data streams/Sparql queries
- Reasoning Capabilities/Inferences

> Objectives:

- Robust RSP engine
- Modularity and flexibility
- Distribution Industrial Cluster
- > Applications:
 - **Potentially:** Banking/payments, climate, energy, power consumption, etc
 - Currently: Water Network Management

WAVES ATOS SE

WHY WAVES ?

WAVES ATOS SE

C-SPARQL

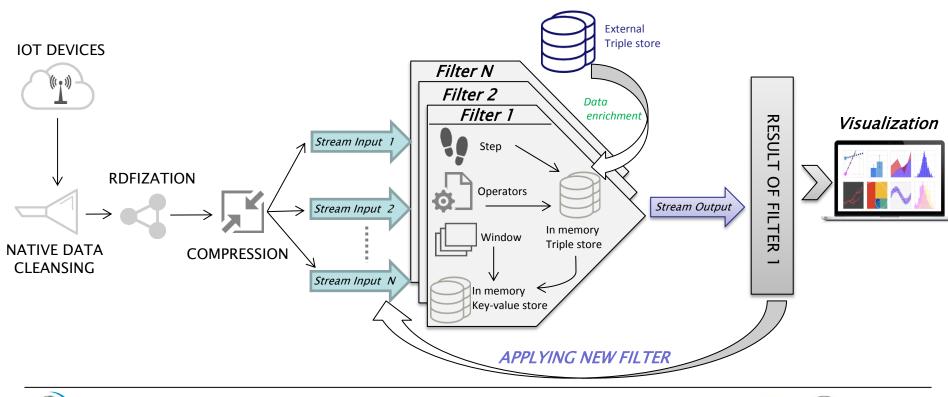
- high input loads → Precision/Recall decrease
- Not designed to be distributed

M. Kolchin, P. Wetz, E. Kiesling, and A. M. Tjoa. **Yabench: A comprehensive framework for RDF stream processor correctness and performance assessment.** In Web Engineering - 16th International Conference, ICWE, Lugano, Switzerland, June 6-9, 2016.

CQELS-Cloud

- Early stage/not open-source
- Impossible to define specific queries/input data/parameters

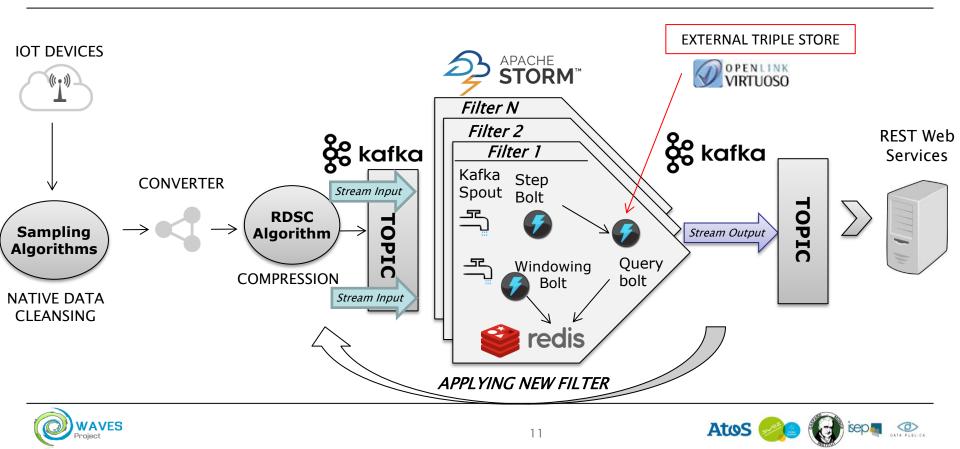
Need to create a new RSP engine industry ready with high precision/recall, ability to parallelize processing and open-source.

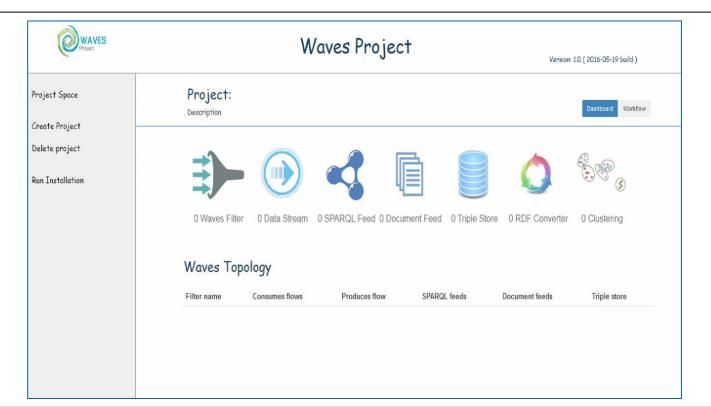


OVERALL ARCHITECTURE

Combining Big Data and Semantic Web technologies

LOGICAL ARCHITECTURE


WAVES ATOS SE


Atos

IMPLEMENTATION ARCHITECTURE

How to configure WAVES ?

WAVES ATOS SE

COMPRESSION TECHNIQUE

Reducing the data size and exposing the results.

RDSZ ALGORITHM

WAVES ATOS SE

Research paper:

Fernandez Arias J., Sanchez L., Fuentes-Lorenzo D., Corcho, O.**RDSZ: An Approach for Lossless RDF Stream Compression**. In he Seman tic Web: Trends and Challenges, LNCS, vol. 8465, pp. 52–67. Springer (2014)

General approach:

- Decomposition of an item into a triple pattern and a set of variable bindings
- Ordering the triples in the RDF graph of the item.
- Iterating over ordered list and replacing the subject + object by variables.
- Comparaison and new representation based on N-1 item

RDSZ: PATTERN & BINDINGS

Pattern

?x0 <http://purl.oclc.org/NET/ssnx/ssn#hasValue> ?x1 .
?x0 <http://purl.oclc.org/NET/ssnx/ssn#isProducedBy> ?x2 .
?x0 <http://purl.oclc.org/NET/ssnx/ssn#startTime> ?x3 .
?x0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?x4 .
?x1 <http://data.nasa.gov/qudt/owl/qudt#numericValue> ?x5 .
?x1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?x6 .

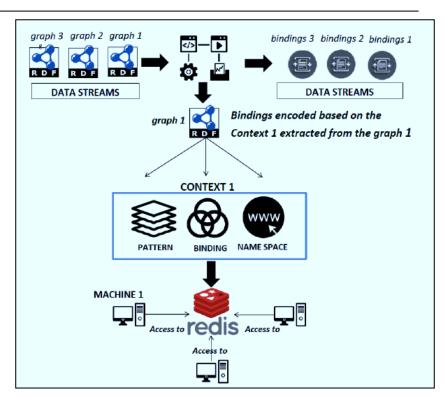
Bindings				
Variable	Value			
?x0	<http: resource#event_1j_sh="" waves.org=""></http:>			
?x1	<http: resource#obs_1j_sh="" waves.org=""></http:>			
?x2	<http: resource#q_dt01="" waves.org=""></http:>			
?x3	"2015-01-01T01:15:00 "^^xsd:dateTime			
?x4	<http: net="" purl.oclc.org="" ssn#sensoroutput="" ssnx=""></http:>			
?x5	"1.3E-1"^^xsd:double			
?x6	<http: net="" purl.oclc.org="" ssn#observationvalue="" ssnx=""></http:>			

> WAVES EVENT

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix qudt: <http://data.nasa.gov/qudt/owl/qudt#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix waves: <http://waves.org/resource#> .

waves:event_1j_sh ssn:hasValue waves:obs_1j_sh ;
 ssn:isProducedBy waves:Q_DT01 ;
 ssn:startTime "2015-01-01T01:15:00"^^xsd:dateTime
 rdf:type ssn:SensorOutput .

waves:Obs_1j_sh qudt:numericValue 1.3E-1; rdf:type ssn:ObservationValue.


RDSC: WAVES CONTRIBUTION

WAVES ATOS SE

Context ID & comparaison fashion

Comparison with first item

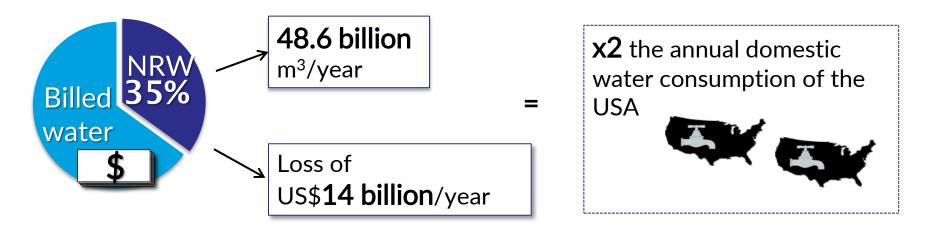
- $\Rightarrow ?O_0 < P_0 > ?O_2$ $?O_2 < P_2 > ?O_3$
- Initial Binding in context (shared and immutable)
 - Replacing redudant values
- ▶ Prefixes: Encoded URI table → smaller Patterns
- Name spaces
 - Reducing URLs length by using association between each pattern and the list of prefixes with their namespaces extracted.
- GZIP compression (activated if needed)
 - Replacing Zlib by a more adapted algorithm

RDSC: COMPRESSION RESULTS

WAVES ATOS SE

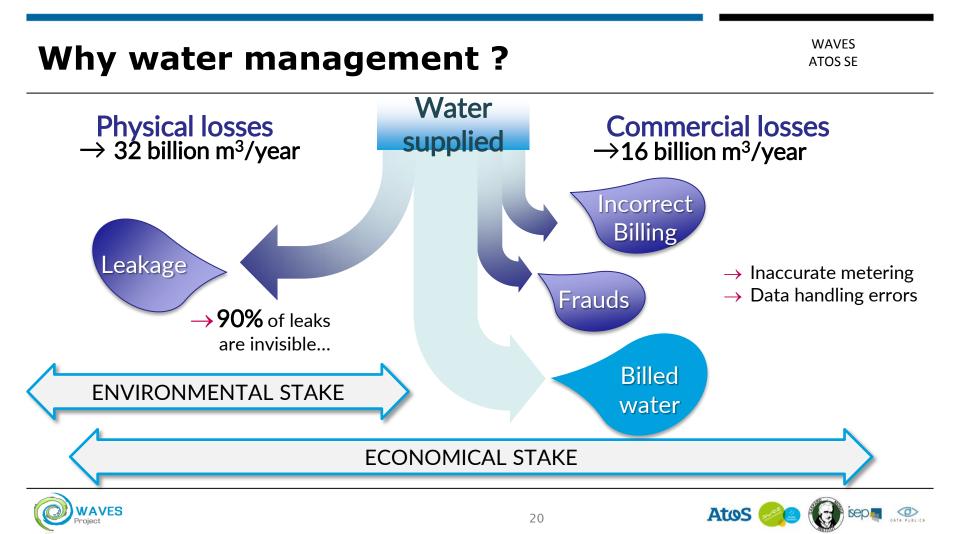
- > A set of 1000 Files(1.4 Gb) each one containing a waves event
 - RDSC deactivating GZIP and Namespaces: 62,4%
 - RDSC activating GZIP: 78.3%
 - RDSC activating GZIP and Namespaces: 84.6%

File number	Size	RDSZ	$\mathrm{RDSZ+gzip}$	$\mathrm{RDSZ} + \mathrm{Ns}$	D-RDSZ (RDSZ+gzip+Ns)
1	$1.3~{\rm Kb}$	84.3%	89.2%	92.6%	93.5%
1000	$1.4~{ m Gb}$	62.4%	78.3%	72.4%	84.6%

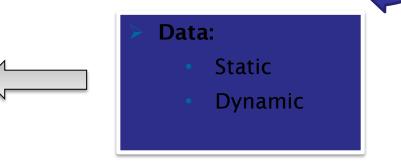

USE CASE

Smart Water Management Network.

Why water management ?


WAVES ATOS SE

Water SUPPLIED to the network - Water BILLED to customers = NON-REVENUE WATER (NRW)


Data Modeling

> Ontologies:

- SSN: Semantic Sensor Network
- CUAHSI: Consortium of Universities for the Advancement of Hydrologic Science Inc
- QUDT3: Quantities, Units, Dimensions and Data Types Ontologies
- WGS84: World Geodetic System 1984

Event:

- Time stamp
- Observation ID
- Numeric value of the observations

WAVES

ATOS SE

rdf:type sensor:Q250 HP rdf:label ssn:Sensor "Q250 HP" rdf:type stream:sh ssn:SensorOutput Static Data ssn:startTime ssn:hasValue "2014-01-01T00:00:00"^^xsd:dateTime observation:1025 rdf:type qudt:numericValue ssn:ObservationValue 0,13

4.8851827E1

wgs_84:lat

unit:CubicMeterPerHour

1.0E0

qudt:scale

qudt:unit

wgs_84:long

2.110242E0

Data Modeling

rdf:type

rdf:label

ssn:onPlatform

ssn:observes

sector: Hubies Haut

 \succ

cuahsi:relatedTo

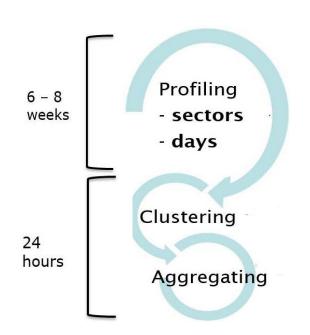
flow:inputflowQ 250HP

rdf:type

cuahsi:inputFlow

ssn:Platform

"Hubies Haut"


WAVES ATOS SE

> Dynamic Data

WAVES ATOS SE

Use **Pearson's correlation** to evaluate similarities between sector's time series consumption

Clustering pair sector's event between comparable sectors and days to detect singularity by using different models and further optimizations

Aggregating anomalies based on time interval using agglomerative clustering

Anomaly Detection

Sector 1	Sector 2	Correlation
Brezin	Garches	0.985
Brezin	Gobert	0.979
Brezin	Haut-Clagny	0.988
Brezin	Hubies-Detendu	0.991
Garches	Gobert	0.985
Garches	Haut-Clagny	0.988
Garches	Hubies-Detendu	0.989
Gobert	Guyancourt-Detendu	0.969

Day 1	Day 2	Correlation		
Monday	Tuesday	0.958		
Monday	Thursday	0.955		
Monday	Friday	0.943		
Saturday	Sunday	0.933		
Tuesday	Wednesday	0.778		
Monday	Wednesday	0.745		

Agglomerative						
Models	KMeans	Clustering	OPTICS	DBSCAN	ROCK	
Precision	0.90	0.87	0.97	0.84	0.78	
Recall	0.65	0.70	0.85	0.69	0.57	
α -threshold	0.60	0.80	0.75	0.80	0.78	
β -threshold	0.45	0.54	0.32	0.44	0.78	

Cityblocks

distance used

Euclidean

24

Manhattan

-

Euclidean

EVALUATION

Exposing Results and Advancement

GLOBAL SET-UP

List of sensors that have measures between 5 and 12

Overall consumption represented by the sum of input fow grouped by the observation timestamp.

Query	Туре	Filter	OPTIONAL	GROUP BY
Q1	Simple	\checkmark	X	X
Q2	Complex	X	✓	\checkmark

- Three load scenarios:
 - Scenario1: small for 1,500 triples/sec
 - Scenario2: medium for 8,000 triples/sec
 - Scenario3: high for more than 20,000 triples/sec

Scenarios run on real cluster using Amazon virtual Machines:

- 5 nodes/10 nodes/20 nodes
- C-SPARQL (1 node only)

QUERY EXAMPLES

- Range: 2 sec / 4sec
- **Step:** 4 sec / 1 sec

Simple Query

PREFIX ssn:<<u>http://purl.oclc.org/NET/ssnx/ssn#</u>>
PREFIX qudt:<<u>http://data.nasa.gov/qudt/owl/qudt#</u>>
PREFIX rdfs: <<u>http://www.w3.org/2000/01/rdf-schema#</u>>
PREFIX cuahsi: <<u>http://his.cuahsi.org/ontology/cuahsi#</u>>
CONSTRUCT{
 waves:event1 ssn:isProducedBy ?sensor;
 ssn:startTime ?time ;
 qudt:numericValue ?value.
 ?sensor ssn:observes ?flow.

WHERE

?event ssn:isProducedBy ?sensor; ssn:hasValue ?observation; ssn:startTime ?time; ?observation qudt:numericValue ?value. ?sensor ssn:observes ?flow. FILTER(?value > "100"^^xsd:double || ?value < "1"^^xsd:double)</pre>

Complex Query

```
PREFIX ssn:<http://purl.oclc.org/NET/ssnx/ssn#>
PREFIX qudt:<<u>http://data.nasa.gov/qudt/owl/qudt#</u>>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX cuahsi: <http://his.cuahsi.org/ontology/cuahsi#>
CONSTRUCT {
             ?event ssn:startTime ?time .
             ?event ssn:isProducedBy :o .
             :o ssn:onPlatform ?sector .
             :o qudt:numericValue ?totalSum
WHERE {
   SELECT DISTINCT ?sector ?event ((?inputSum-?outputSum) as ?totalSum) ?time \
   WHERE {
        SELECT ?sector ?event ?time (SUM(?input value) AS ?inputSum) (SUM(?output value) AS ?outputSum)
       WHERE {
            ?observation gudt:numericValue ?input value.
            ?event ssn:isProducedBy ?sensor;
                   ssn:hasValue ?observation;
                   ssn:startTime ?time.
            ?sensor ssn:observes ?flow;
                    ssn:onPlatform ?sector.
            ?flow a cuahsi: InputFlow;
                  cuahsi:relatedTo ?sector.
            OPTIONAL
                ?observation gudt:numericValue ?output value.
                ?event ssn:isProducedBy ?sensor;
                       ssn:hasValue ?observation;
                       ssn:startTime ?time.
                ?sensor ssn:observes ?flow;
                        ssn:onPlatform ?sector.
                ?flow a cuahsi:OutputFlow;
                      cuahsi:relatedTo ?sector.
        GROUP BY 2sector
```


PRECISION & RECALL

WAVES VS SPARQL

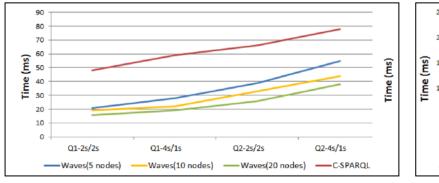
		(a) Scenario1		(b) Scenario 2		(c) Scenario 3	
		WAVES	C-SPARQL	WAVES	C-SPARQL	WAVES	C-SPARQL
Precision	Q1-2s/2s	100%	100%	100%	94%	98%	80%
1 Tecision	Q1-4s/1s	100%	100%	100%	88%	84%	78%
Recall	Q2-2s/2s	100%	93%	97%	95%	79%	56%
neean	Q2-4s/1s	100%	91%	94%	84%	72%	43%

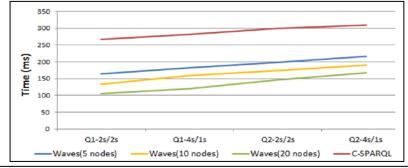
Simple query & low load scenario:

- WAVES & C-SPARQL remain performant
- Complex query & medium load scenario:
 - C-SPARQL shows precision and recall decrease by **3 points** on average

Complex query & high load scenario:

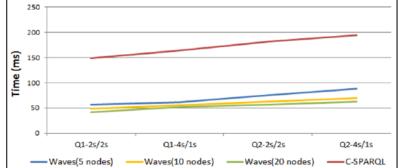
 C-SPARQL shows significant precision and recall dropdown by **30 points** on average




EXECUTION TIME

WAVES ATOS SE

Scenario 1: 1,500 triples/sec


Scenario 2: 8000 triples/sec

WAVES

Project

Scenario 3: 20000 triples/sec

CONCLUSION

Where are we heading ?

Future Perspectives

- Enrichment with Linked Data and Social Media to determine the cause of anomalies (e.g., very high or low consumption, etc.) :
 - Is there something happened in social networks: natural disaster, etc.
 - Special events: holidays, festivals, marathon, etc.
- Decision making: a potential anomaly could be considered as a real anomaly or not:
 - Invoking background context to make decision
 - Extending reasoning capabilities in WAVES

WAVES ATOS SE

